
les Nouvelles243

Software, Patents & Open Source

Component-Based Software,1 Patents2 &
Open Source:3 A Guide Through The
Bermuda Triangle
By Thibault Bouvier

ith commercial success come friends and
enemies you didn’t know you had. But
everything is relative. Success, failure,

friends or enemies depend on who you are (industry,
university, start-up) and on your business model. Deal-
ing with software, commercial success comes with a
product that contains (embedded) software or with
software on a support (memory stick, CD-ROM) to
be run on a device. For our purposes, and for reasons
explained further, software and the device that runs
the software will be assimilated, and considered as
our product.

Having developed our product—or developing it—
the question is never “can I get a patent or not?” The
real questions are “can I get money out of it?”; “how
can I secure my business?”; “what is its added value?”

Before having a more in depth look into these
questions, why are we talking about all this? In the
early days of the computing industry, the value was
in hardware. Software and source code came as part

of the computer package. There were only a few pro-
gramming languages in existence at that time. As time
has moved on, the value has resided more and more in
software. Today, value principally resides in software,
services, and in data (which requires management by
software), as any social network, SaaS (Software as a
Service), PaaS (platform as a service) or any business
intelligence professional knows.

Dealing with source code, as a matter of trends, it
started with being accessible (but not yet open as we
say today), then moved to proprietary, with a recent
and increasing trend to open source. Nowadays,
open source solutions are hugely developed, also by
companies that used to deploy proprietary software.
Patent holders deploy open source software and
open source organisations file patent applications,
creating a complex mesh of interests, opportunities,
and constraints. Such complexity can be faced almost
everywhere since software is found in smartphones
of course, but also from professional concerns like
medical imaging technology, navigation systems, car
safety features (ABS, ESP), to domestic appliances
such as Blu-ray technology, washing machines, refrig-
erators, vacuum cleaners, etc.4 Software are found in
all market sectors, for all types of techniques, from
high tech business-to-business (B2B) products to mass
market products. Our product can then belong to any
one of these markets. It can be ready for release or
still under development.

Developing software is a creative task. And creat-
ing software is an investment leading to value that
requires and deserves protection. Appropriate protec-
tion relies on Intellectual Property (IP). Indeed, most
software rely on existing components. Combining
existing components into a new arrangement is an
invention process. What precautions should be taken
for such an arrangement? Is it patentable? Can such
an arrangement infringe a patent? Can a source code
infringe a patent? Obviously, even if reluctant to it,
patentability and infringement issues often could,
even should, be considered.

W

1. A computer program is a list of computer instructions or
data that enable a computer to execute given tasks/function
when compiled in a machine, readable and executed on said
computer. A computer program can be expressed in two ways:
as a source code and as an object code.

Software then will be understood as a computer program,
knowing that such definition could also encompass the packag-
ing and the brand under which the software is placed on the
market. A brand can be protected by a trademark, which relates
to distinctive signs, and will not be further discussed.

2. Patents relate to inventions that involve technical features.
A patent grants to the owner a temporary exclusive right pre-

venting others—especially competitors-—from using the pat-
ented invention without his or her consent, in return for public
disclosure of the invention. It needs to be filed and generally
requires several years of examination proceedings to grant (or
not) functional features together with qualified people to inter-
pret the scope of the protection sought.

3. Open source is a choice on the way to distribute software
by giving explicit access to the source code that is protected
by copyright (see under). Open source software can contain
copylefted elements, copyleft being the use of copyright law
to offer the right to distribute copies and modified versions of a
work and requiring that the same rights be preserved in modi-
fied versions of the work. Open source then relates to copyright
licensing and shall not be considered as an IPR (see next).

4. See “Patents for software?” document from the EPO, from
http://www.epo.org/news-issues/issues/computers/software.html

September 2012 244

Software, Patents & Open Source

To make and to secure business, some very basic
questions could be: What’s inside my software?
Where does it come from? Is it legally safe to use and
combine existing components into new architecture?
Could some components be protected by a patent?
What implications can this have for the final product
distribution scheme?

What about the Internet? Shall a developer consider
that since available on the Internet, a component is
free5 of use? Talking about the Internet, never before
has it been possible to distribute (did I say copy?) data,
files, and source code at such a pace, worldwide, and
keep track of it. When IP deals with copy rights, no
need to explain then the stakes with regard to Intel-
lectual Property Rights (IPRs6) management.

First, let’s have a more in depth look into our soft-
ware. At first it contains a source code.7
A Bit About Copyright

Production of a source code is considered as liter-
ary works. It is then likely to give right to copyright8
protection, as well as the object (compiled) code,
but not to the media on which the code is recorded.
Copyright can be considered as a primary mode of
legal protection since protection is granted to us im-
mediately, on the date of the creation, as no official
filing or registration is required, but provided the
creation is original.9 However, keeping evidence of
the creation and of its creation date through legal
deposit is generally recommended since it can be
useful in case of litigation.

In addition to the many cases in which authors have
the right to be identified with their work, copyright

prevents others from:
(a) reproducing (loading, displaying, running,
 transmitting or storing),
(b) translating, adapting, arranging or doing any
 other alteration, and
(c) distributing to the public (including renting)
 the source/object code without your permission.
The existence of copyright is sometimes sufficient

on its own to prevent or stop others from exploiting/
trying to exploit your
work. If it does not,
it gives you the right
to take legal action to
stop them, and to claim
damages. But as liter-
ar y works, copyright
protection covers the
expression of an idea,
not the idea itself (the
idea itself or rather the
functions may be protected by a patent, see below).

Dealing with software, means that the code is
only protected as a text, an expression, not the
underlying idea or functionalities. Then if anybody
wants to develop same functionalities with another
source code, there is no way to prevent that, unlike
patents. However, such development shall not copy/
translate existing source code. Indeed, also convert-
ing a program into a new computer language gives
copyright on the new language; it does not abolish
existing copyright on the initial existing source code.
Converting a program into a new languages counts as
adapting a work. Then re-writing an existing source
code into a new language infringes copyright of exist-
ing source code. If the original source code infringes
a patent when compiled and run, translating such
source code into another programming language is
still an infringement of the patent. With that respect,
the strength of patent protection is considered to be
globally stronger than copyright.

In addition, copyright applies to any medium.
This means that you must not reproduce copyright
protected work in another medium without permis-
sion. Indeed, storing any work in a computer is
considered as ‘copying’ the work. Similarly, running
a computer program or displaying a work will usually
also involve ‘copying’. It means for instance that it’s
not because a code is accessible through the Internet
that this code is freely usable: it may be protected
by copyright. Downloading such code or embedding
it into your own source code could lead to more or
less severe issues.

■ Thibault Bouvier,
Novagraaf,
Patent Attorney,
London, UK
E-mail: thibault.bouvier@
novagraaf.com

5. Please note that the term “free” when associated with
open source and software, relates to copyright and is supposed
to be well known as clearly differentiated from “free of charge”?

6. IPR (Intellectual Property Rights) is a term referring to a
number of distinct types of creations of the mind for which a
set of exclusive rights are recognised. Common types of IPR in-
clude patents, copyrights, trademarks, industrial design rights
and trade secrets in some jurisdictions (source: http://www.ipo.
gov.uk/ipresearch-iprights-sum-201107.pdf).

7. A source code is a text, a sequence of instructions com-
prehensible by humans and written in a computer programming
language (like C++ for instance). A source code is then com-
piled into an object code, i.e. a sequence binary of values (0/1)
executable by a machine.

8. Copyright is a set of exclusive rights granted by a state to
the creator of an original work or their assignee for a limited
period of time upon disclosure of the work. This includes the
right to copy, distribute and adapt the work. http://www.ipo.gov.
uk/types/copy.htm

9. See the Berne Convention for the Protection of Literary
and Artistic Works (http://www.wipo.int/treaties/en/ip/berne/trt-
docs_wo001.html).

les Nouvelles245

Software, Patents & Open Source

Copyright protection also includes moral rights.
Although limited with regard to software, it may be of
importance when dealing with authors. The name of
the authors should be recorded for every developed
element, including when working with sub-contrac-
tors, universities, interns, etc. Great care should be
taken with sub-contractors, otherwise developing
software in collaboration e.g. with a university or
a start-up company could raise more or less severe
issues with regard to the ownership of the copyright
when not organised beforehand through contract(s).
This could lead to fundamental valuation issues. What
if you can’t sign a licence agreement without the
consent of a sub-contractor? How would this effect
the value of your software?

Another level of complexity may be added when
dealing with composite work. Such derivative work
occurs when incorporating an existing first work with-
out the collaboration of the author of the first work.
This is typical to component-based software and/or to
a new release of software. In such cases, the author
of the contribution is the owner of its contribution
but must respect copyrights of its predecessor(s). For
these reasons, it is better to know and to keep record
of who did what, and when. An intern developed an
element in a university? A start-up is negotiating a
deal with a major company on a software embedding
such element? Mr. X, your former colleague, left your
company to launch his own product on an object he
developed while at your company? Former friends
can become best enemies; and without going that far,
having to look for a developer’s identity/signature can
postpone or cancel a deal. Why? Because copyright
protection grants its owner exclusive rights with
regard to reproduction, adaptation and distribution
of the work. Copyright can then have power over the
distribution scheme. Such legal power is considered
as a protective weapon by some and as a constraint
by others. For several reasons, it has been considered
that such constraint was an issue, and—to make it
short,—the open source movement was born.
Open Source

Unlike copyright and patents, open source is not
ruled by national laws.10 Open source is considered
as an initiative, a will, a philosophy sometimes, that
aims to overcome existing copyright legal constraints
though appropriate agreements. Open source is thus
a copyright agreement matter. Several open source li-
cences exist and the reader can refer to Free Software

Foundation (FSF) or Open Source Initiative (OSI) for
further information.

Among prerogatives of open source software, there
is: access to the source code, freedom to modify it,
to redistribute copies and to run the software for any
purpose. Open source’s approach to legal freedom is
a highly powerful tool for developing, adapting and
distributing software in that ever-changing world, and
open source even participates to such changes, as a
facilitator for a large distribution as well as a tool to
attract new users and potential customers.

Unlike proprietary licence that generally relates
to one licensor dealing with one licensee, one of the
main features of open source software is the role
of a community. A community gathers users and
developers that, for each release, are likely to share
experience and to improve software, regardless of
their country of residence. A good way to debug and
to obsolete yourself before others do. To be efficient,
a community must be active (what’s the point of a
social network with no events?), and not (at least
not too much) legally restrictive. Thus, the licensing
of the open source code must be secured, whether
you care about others embedding your source code
into their own proprietary source code, or not. One
way to secure open source distribution in time (for
developments to come) is to impose from the origin a
positive copyright constraint. Such positive constraint
to copyright is called copyleft.
Copyleft

Whether you like it or not, a source code (open or
proprietary) is protected by copyright, although the
owner/programmer can decide to enforce it or not.
Copyleft is a very good way to control the possibility
of distributors to embedding your open source code
into their own source code. Indeed, copyleft11 ensures
that all the authorisations involved in the distribution
scheme are systematically granted the same rights on
the derived work, which is usually referred to as the
“viral scope.” Conversely, the initial author benefits
from further developments. Naturally, reality is a bit
more complex and granted rights depend on the type,
i.e. the content, of licence agreement. The reader
can refer to existing information sources12 for further
information on open source licences.

10. See http://www.fsf.org/ or http://www.opensource.org/docs/
osd / for definition, or www.gnu.org for further information.

11. Copyleft is a form of licensing that describes the practice
of using copyright law to offer the right to distribute copies and
modified versions of a work and requires that the same rights
be preserved in modified versions of the work. http://www.gnu.
org/copyleft/copyleft.en.html.

12. See for instance (http://www.gnu.org/licenses/licenses.en.html
or in french http://www.inria.fr/institut/strategie/logiciel-libre.

September 2012 246

Software, Patents & Open Source

Then the type of licence shall be carefully chosen
according to your business model. For instance, sell-
ing a copyleft licence can sometimes make no sense,
and embedding a copylefted element into a propri-
etary software will strongly and negatively affect the
proprietary value of that software. In addition, it is
worth noting that embedding (licensing in) different
copylefted components into copylefted software can
raise compatibility issues with regard to the “license
out” (distribution scheme) that is sought. Basically,
it’s safer to consider that most licences are likely to
be incompatible; and their compatibility must be
checked before any licensing out.
Patentability of Software

From a technical viewpoint, what is our software
doing? How does it work once compiled and run?
Does it involve any technical effect on some kind
of hardware? Does it achieve any tangible results? If
yes, the patent bell should ring because if you could
file a patent on this aspect, others could have done it
before, or could do it later. The question here is not
to consider whether it’s good or bad to have patents
on software, but to accept the law as it is.13

In Europe, a patentable invention is a technical
solution to a technical problem. Inventions involving
computers have been patentable since the early years
of the European Patent Office (EPO).14 Although a
few changes have occurred with regard to how an
invention shall be considered in light of the prior
art or per se,15 the law itself, has always considered
that computer programs “as such” are excluded
from patentability.16 Therefore, there must be a clear
distinction made between technical (patentable) and
non-technical (excluded from patentability) features.
Indeed, with regard to the technical solution aspects,
it has been part of the European legal tradition since
the early days of the patent system that patent protec-
tion should be reserved for technical creations. To be
patentable, the subject-matter for which protection is
sought must have a “technical character” or involve
a “technical teaching”; for example, an instruction
addressed to a skilled person as to how to solve a
particular technical problem (rather than a purely
financial, commercial or mathematical problem) using

particular technical means.17 In addition, inventions
must solve a technical problem. Inventions involving
computer programs can be considered as involving
technical features, but if they implement business,
mathematical or similar methods and do not produce
technical effects, they are not patentable because
they solve a business problem rather than a technical
one. No patents will be granted in Europe for such
inventions.

To be patentable an invention must be a computer
implemented invention18 (CII), for example, an inven-
tion involving hardware shall have a “further technical
effect” beyond the normal effects software has,19 like
for instance writing in a memory, communicating on
a bus, establishing electrical currents, etc. Similarly,
no patent would be granted for an algorithm; however
the use of that algorithm in a technical process can
be patentable. Keep in mind that the European law
(EPC for European Patent Convention) is a two-edged
sword. Not being excluded does not mean the pat-
ent is granted. It still has to be new and involve an
inventive step, and this is another story…

Thus, the EPO does not grant patents for computer
programs. The term “software patents” itself is a
misleading concept. Only computer implemented
invention that make a technical contribution can be
patentable. In this respect the granting practice of
the EPO differs significantly from that of the United
States Patent and Trademark Office (USPTO). In the
USA, only laws of nature, physical phenomena, and
abstract ideas are legally excluded from patentability.
The Supreme Court confirmed with the Bilski case
that abstract ideas are not patentable. Business meth-
ods and software patents remain potentially eligible
for U.S. patent protection. In addition, the Federal
Circuit remains free to develop additional criteria for
patent eligibility. It means that even if not excluded
by law and respecting existing patentability tests, a
patent application could possibly face new criteria the
Federal Circuit would then design, which creates a
bit of uncertainty.

13. In addition to national laws, see also http://www.wipo.int/
sme/en/documents/software_patents.htm.

14. See for instance decision T 208/84 “VICOM” (http://www.
epo.org/law-practice/case-law-appeals/recent/t840208ep1.html).

15. So called “contribution approach.”
16. See Art. 52 EPC (http://www.epo.org/law-practice/legal-

texts/html/epc/2010/e/ar52.html) … shall not be regarded as
inventions … programs for computers … as such.

17. Op. Cit. Ref.4.
18. A computer-implemented invention is an invention

whose implementation involves the use of a computer, com-
puter network or other programmable apparatus; the invention
having one or more features which are realised wholly or partly
by means of a computer program.

19. Such approach has been established in the turning-point
Board of Appeal case law decision T 1173/97 (http://www.epo.
org/law-practice/case-law-appeals/recent/t971173ep1.html)
and confirmed by the Enlarge Board of Appeal decision G3/08
(http://www.epo.org/law-practice/case-law-appeals/recent/
g080003ex1.html).

les Nouvelles247

Software, Patents & Open Source

In Asia (China, Japan), the patentability criteria is
similar to the EPO, with an even stronger focus on
hardware features or “real world” processes. In terms
of patent application drafting, the Asian criteria being
amongst of the toughest, it is recommended to use
them as a worldwide reference: if you get a patent
granted in China, it is likely to be granted in Europe
and in the USA—not conversely, regardless of the
Patent Prosecution Highway (PPH).20

Then, for those wishing to file patent applica-
tions worldwide on software—oops! on a computer
implemented invention—there is a kind a paradox
in which a “software patent” must be described
in terms of hardware. One of the main difficulties
is then to transform the software into a computer
implemented invention, i.e. at least in Europe to
clearly define the technical problem, especially for
so-called inventions relating to problems such as a
business/administrative method (method of selling,
including through a network, data gathering), encryp-
tion (DRM), databases and database management
system, billing and payment systems, simulations,
games, e-learning methods, medical informatics, and
mathematical methods.21

As Thomas Edison said, “The value of an idea lies
in the using of it.” The same should apply with your
software: think of the use of it on its hardware. If
the use belongs to one of the previous categories or
similar, think twice before spending money on filing
a patent application.
Copyright vs. Patents

Patent and copyright are different legal rights to
protect different objects.

– Patents cover technical features where copyright
protects expressions in texts.
– Patents are independent from the distribution
scheme of a final product and cannot refer to any
open source licence; whereas copyright licences
are part of the distribution scheme and can also
refer to patent(s).

– Patents are examined (what you file is not what
you get, and you can get nothing at the end of the
day!) where copyright is automatically granted.
– Third parties can oppose to a patent where they
can’t oppose to a copyright.
Basically patents are granted by an Administration

(Patent Office) under a public law. Any action from
third parties on the patent application or on the
patent shall be made before the Administration22 or
before national court(s) respectively and will generally
deal with the validity of the patent. On the contrary,
open source deals with copyright licences ruled under
private laws. There is then a possible negotiation on
the licence clauses, between the copyright owner
and third parties, where the copyright is generally
presumed valid.

Depending on the software, securing the invest-
ment can sometimes only be made by copyright only,
by patents only, or sometimes by both. There is no
easy or obvious correlation between protection grant-
ed by patent(s) and granted by copyrights on a same
product. As a simple illustration, assume software is
protected by copyright only. If a competitor creates
another software with the same functionalities but
with another source code, there is nothing you can
do about it.23 But now assume software is protected
by a patent. If a competitor creates software with
same functionalities, regardless of the source code,
there is a high risk of infringement.

With regard to copyright, protection is granted
from the creation. Then, the publication of a source
code can be done without interfering with copyright
protection. With regard to patents, the public disclo-
sure of an invention occurs 18 months after the filing
date. During that period of time, the patent owner can
decide to publish or keep unpublished the content
of the invention.

Today, no Patent Office requires or examines
source codes nor publishes them as annexes to pat-
ent application documents. When filing a computer
implemented invention, there is no need to disclose
any source code; that is a good way to keep it secret

20. The Patent Prosecution Highway (PPH) is a bunch of bilat-
eral agreements between several patent offices (EPO, USA, Ja-
pan, China, etc.). To make it simple, it enables a patent granted
in one country to be almost automatically granted in the other
country. However, and especially dealing with software inven-
tion, due to patent procedures and the application criteria of the
PPH, it seems unlikely today that a patent granted in the USA
could be granted in China using the benefit of the PPH.

21. See for instance “Patent Law for Computer Scientists/
Steps to Protect Computer-Implemented Inventions” by Closa,
D., Gardiner, A., Giemsa, F., Machek, J. (Springer Edition)–ISBN
978-3-642-05077-0.

22. See the observations by third parties and the opposition
proceedings before the EPO according to Art. 115 EPC. The
reader is also invited to see an interesting initiative made by
the peer to patent project in collaboration with the USPTO, UK-
PTO, IP Australia at http://peertopatent.org/ in which the public
can help PTOs to find the information relevant to assessing the
claims of pending patent applications.

23. See case SAS Institute Inc v World Programming Limited
before the European Court of Justice (pending) that could lead
to a kind of protection of the architecture.

September 2012 248

Software, Patents & Open Source

then. However, any disclosure made available to the
public by means of a written or oral description, by
use or in any other way, before the date of filing, will
destroy the novelty24 of the invention; then no patent
will be granted. Accordingly, disclosure of a source
code can be considered as prior art detrimental to
the novelty of a patent application (competitors’ ones
or your own). So, publishing a source code is a good
way to prevent a competitor from filing a patent ap-
plication on the disclosed technique. However, it is
also a good way to communicate your knowledge to
patent owners.
So What

Apart from the design of a product, software func-
tionalities are generally what make that product sell.

Software development involves high costs and time
investment. In addition, development and distribution
are moving processes. New releases are spread in
some countries and not in others; software is adapted
to some local or to some worldwide client needs. Both
in terms of geography, time and technical features,
software boundaries are ever changing.

Securing business often requires legal protection,
with one or both of the copyright protection and pat-
ent protection. There is no philosophical discussion
here about whether software inventions deserve pat-
ent protection or not. A patent is very often a vital
element for raising funds and for securing access to
market, especially for start-ups. Whereas patents have
been extensively used for their “right to exclude,”
today they are also used as an intangible asset, a valu-
ation tool or a marketing tool of a company; a very
good way to gain trust from investors, to raise funds.

Copyright is sometime the only way to protect in-
vestment. Copyleft is also a two-edged sword, it can
prevent a third party from patenting the disclosed
solution, however, it also gives access to patentees
on your technology.

Patent and copyright (including copyleft) protection
should then be considered as part of the strategic
business plan of a company, keeping in mind the
limits of the respective protection. For instance, since
computer programs are not patentable as such, any
seizure of a media (CD-ROM, DVD, memory stick,
etc.) on which is recorded the program, will be part
of the infringement evidence. Some issue could rise

is if the device/computer/machine needed to run the
program is specifically designed for that purpose/
process/software.

In terms of licencing, as a matter of trend, it is
interesting to note that whereas most standard open
source licences were quite silent about patents, a
few recent licences now include clauses dealing
with patents.25

Patents and copyrights can coexist (or not!) on a
final product. Existing components to be integrated
can be not compatible due to their respective IPRs.
Great care should then be taken on each integrated
element. In particular, downloading an element from
the Internet and integrating it without any consid-
eration to its IPRs can have a strong impact on the
final product distribution scheme. Each embedded
component implies its own legal constraints (copy-
right, copyleft). The licensing in policy will impact
the licensing out strategy, and vice versa. The more
components the software contains, the more complex
is the legal situation.

Open source licences must be carefully checked,
at least on their viral scope, their permissibility and
compatibility (ascending / descending), before inte-
grating any element. Decision to integrate, rewrite or
discard each element should be taken according to a
clear licensing in policy and a licensing out strategy.

Talking about strategy, it is interesting to note that
some firms develop at the same time version N of a
software as open source to attract interest, and ver-
sion N-+1 as proprietary with improved functional-
ities. Food for thought, isn’t it? As we have seen, that
world is an exciting one, not yet fully explored, with
moving boundaries. What to do with all that, then?
Business Management/Distribution Scheme

Dealing with IPRs, a lack of management leads to
potentially huge legal and industrial risks that can
have a strong impact on the business model and on
an economic situation. Integrating existing compo-
nents is a “licensing in” process that can be danger-
ous if programmers ignore the IPRs of others, with
a strong impact on the “licensing out” distribution
scheme (open source or proprietary). Each integrated
component can be ruled by its own patent(s) and/or
its own copyright (copyleft). Integrating elements
under a General Public Licence (GPL) for instance can
prevent deploying the result as proprietary. Several
elements can be regulated by different copyrights,
which are not compatible when integrating them. 24. See Art. 54 EPC (http://www.epo.org/law-practice/legal-

texts/html/epc/2010/e/ar54.html) .… The state of the art shall
be held to comprise everything made available to the public by
means of a written or oral description, by use, or in any other
way, before the date of filing … 25. See for instance GPL V.3, Apache, CeCILL V.2 License, etc.

les Nouvelles249

Software, Patents & Open Source

Integrating patented elements without the consent
of the patent owner is an infringement.

Obtaining or negotiating a licence on a patented
element can also have an impact on the distribution
scheme. Granting a licence on a patent for a propri-
etary distribution scheme does not implicitly imply
a licence for an open source distribution scheme. As
a result, the distribution scheme sometimes has to
be modified. The final product must be distributed
without one component or with exception; one com-
ponent must be rewritten or substituted by another
one; a negotiation must take place with the IPR owner.
Then the time to market is often lengthened and the
target price modified.

The choice of using a component is not only a mat-
ter of technical features. IPRs of such a component are
strongly recommended to be contemplated before any
integration. With that respect, the reader is invited
to refer to some existing interesting IPR methodolo-
gies.26 The licensing in policy and the licensing out
scheme are advantageously linked together in a loop
process. Even for small and medium enterprises
(SMEs) choosing the right IPR strategy, i.e. copyright,
open source or patents as business strategic elements

is a way to sustain growth of a company. Nowadays,
it seems that sooner or later, most businesses are
subject to merger and acquisitions (M&A). With that
respect, acting as if you were running a due diligence
on yourself is a good way to manage your IPRs.

Securing business involving software is complex
and requires a team of specialists. Among them:
developers, technology transfer officers / business de-
velopment specialists, patent attorneys, lawyers and
executives. Naturally, the business model, the legal
constraints will be different according to the context.
A software developed under collaborative innovation
will face different issues than when developed by (or
with) a start-up. Producing capabilities of a SME will
be balanced by the subcontracting necessities of a
University. Similarly, the situation will be different
whether software is developed for internal clients
within a group or as a product to be launched in the
cloud in the e-economy.

In addition to these moving boundaries, it is worth
noticing that the EPO trend is to shift the exclusion
of computer program from patentability issue to
the inventive step requirement. And this is quite
another story. ■

26. See for instance the following URL http://www.qualipso.
org/IPR_methodology from the INRIA (Public science and tech-
nology institution fully dedicated to computational sciences).

Effortlessly find everything you need with
our online Licensing Resource Guide. Tap
into the incredible network of LES (USA &
Canada) today with the premier search tool for
intellectual property professionals.

It works for your company.
It works for you.

Visit LicensingResourceGuide.com
or scan the QR code to the right

